
Running models
locally
There's lots of generative AI models you can run locally, instead of using online services. Here's a
couple of options!

Running generative models locally
Running Large Language Models locally
Experiment with Dutch local LLMs

Running generative models
locally
All the big models run on external servers and are usually only available through a (paid) account.
There are some alternatives available that you can run locally on your own machine. Installing
these usually involves complex installation procedures, but there's a trend for 'one-click-installers'
that get you set up relatively painlessly. Below you can find some simple installers for various
generative AI's.

Image generation on your own computer
These models are based on Stable Diffusion. You will not get the latest version, but you can re-train
the model, or download variants from the internet. Automatic11111 also allows you to combine
models.

Stable Diffusion WebUI by Automatic11111: https://github.com/AUTOMATIC1111/stable-diffusion-
webui (Win, Linux, Mac)

Easy Diffusion https://github.com/easydiffusion/easydiffusion (Win, Linux, Mac)

Both programs above can be downloaded from the Github page directly, resulting in a folder
containing a .bat file. Run this and it will start downloading and installing all necessary files. Once
it's done, run the .bat again and the program will start in your browser.

Note 1 All of these models take up significant amount of space on your computer.
The programs can take up to 3Gb, and the models are even larger. Make sure you have
around 30Gb free once you get these models running!

Note 2 Most of these models need (recent and beefy) Nvidia graphics cards to
run, or Apple M1/M2.

If you don't have a system that can run these models and you also don't want to use the
online services, or need some help with installation, please visit us in Oudenoord
ON0.50. We have some models set up here that you can experiment with. Open for both
students and employees (of HKU.)

https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://github.com/easydiffusion/easydiffusion

DiffusionBee https://diffusionbee.com/ for Mac. Also runs on older Intel macs, but those will take a
very long time to generate images.

Text generation ('ChatGPT') on your own
computer
If you want more control over the installation, pick between various models and give the model
your own instructions, check the Ollama bookstack description page here.

If you want a no-fuss installation with a web interface, you can try something like oobabooga:
https://github.com/oobabooga/text-generation-webui (Win, Linux, Mac)

https://diffusionbee.com/
https://bookstack.hku.nl/books/artificial-intelligence/page/running-large-language-models-locally
https://github.com/oobabooga/text-generation-webui

Running Large Language
Models locally
Ollama is currently a popular options for running LLMs locally. With the newer versions you can
download other models than llama too, like Google's Gemma or task-specific smaller models. You
can download Ollama from ollama.com, available for all systems. Again: you need a bit of a beefy
computer for this, preferrably with a recent NVIDIA graphics card and quite a bit of storage. Once
installed, Ollama disappears to the background. On Windows, you can still see it running among
the icons in the lower right of the taskbar. On Mac, there will be an icon at the top of your screen.

When installed, open a terminal (win key, type cmd) and run ollama from here.

Ollama starter tips
No idea where to start? Type

See all installed models by typing

Add a model with the following command. Replace [model name] with one of the models you can
find in the ollama model list.

All models (and instructions, see below) are saved as blob files in
C:\Users\[Username]\.ollama\models\blobs. This means you can't manually remove or edit models.
To delete a model, type

ollama -h

ollama list

ollama run [model name]

ollama rm [model name]

https://www.ollama.com
https://ollama.com/library

Creating Characters: build your own
instructionset
One of the ways you can modify the model is to give it additional instructions before it runs
conversation mode. This way you can give a model character. You can instruct it to talk a certain
way, use specific kind of vocabulary or express itself in a different way. This can improve the
responses you get from the model, but can also be used to make interesting interactions.

The way to do this is to copy the instructions of an existing model (like llama3:8b), modify those
instructions, and then create a new model in ollama using those new instructions. For a long
description of this process, see here. The short version:

Step 1: copy a model file
You can make a copy of an existing model in Ollama by using the following command:

where [modelname] is one of the models you have already installed (e.g. llama3:8b), and
[newname] is the filename of the new instructionset you want to create (e.g. myfirstmodel).
Where does it save the new file? In the folder that you are currently in while typing the
command! On Windows, when opening a terminal this will be C:\Users\[Username] by default. In
order to keep everything in one place it's a good idea to navigate to the folder where you want
your workfiles to be before running these commands.

We also have two files prepared for you here: story and emo. These use the llama3:8b model,
which will download automatically when you install and run this 'story' or 'emo' model (see below).

Step 2: modify the model file
Open the newly saved model file in a text editor. There's lots of things you can edit here, see the
full description on the ollama page. If you only want to change the character of the AI that you are
talking with, add a descriptor at "system Job Description:". In the 'story' file, the assistant will write
all responses as a short story. With the 'emo' file, the assistant will reply only in one word. You can
see this in the model file if you open it in a text editor.

Step 3: install your model

Please note that this is not the same as training your own model, just an additional set
of instructions to a pre-trained model. The names ollama gave to this process are a bit
confusing, the modelfile they mention here is an instructionset to an existing model.

ollama show [modelname] --modelfile > [newname]

https://www.gpu-mart.com/blog/custom-llm-models-with-ollama-modelfile
https://bookstack.hku.nl/attachments/50
https://bookstack.hku.nl/attachments/51
https://github.com/ollama/ollama/blob/main/docs/modelfile.md?plain=1

To install your modified model file, type:

Under Windows, this often will give an error along the lines: "1 argument expected, 4 given". If
that's the case, make sure you're command line is navigated to the folder where the modified
model is located, and then use .\[filename] as location. So when you want to save the story file you
just edited as a model called 'story', navigate to the folder where you have the file 'story' and type:

To check: when successful, your new model should now show up when you type: ollama list.

All modified models will still use the same pre-trained model file. If all your modified models are
based on the llama3:8b model, it will only download that model once (the list command shows all
of them being 5 GB, but that is not the size on your disk, just the size it will use in your memory).

Step 4: run your model

Step 5: edit your model?
Once installed, you cannot edit a model.

To update a model, re-do all steps above: change the local file, remove the old model, create the
new model.

Creating a chain of models
If you want to have models building on each other's outputs, or models talking to each other, you
can chain your characters by using python scripts. For instance, using the 'story' and 'emo' models
above, you can chain these together using Python and the following script:

ollama create [name] -f [file location]

ollama create story -f .\story

ollama run [modelname]

You can edit the model file you saved locally, but this will NOT update the model in
ollama.

import ollama

def get_response(model, message):
 response = ollama.chat(model=model, messages=[
 {

(to use ollama in Python, use pip install ollama. You will probably have to re-install your models if
you ran ollama from the command line before)

Using an interface
There are lots of ways of adding an interface to your LLM, like LM Studio, or Open WebUI. These
change all the time so there's not much use of making a list of them here. The interfaces usually
allow you to make Characters (like above) directly in the browser, to add (text) files as input or to
add additional local models such as Stable Diffusion for image generation. LM Studio makes it even
more user friendly by allowing to to manage and run models within the UI directly.

 'role': 'user',
 'content': message,
 },
])
 return response['message']['content']

def chain_models():
 inputIntoFirst = 'The summary of the day'
 # First, get the response from the 'emo' model
 emo_response = get_response('emo', inputIntoFirst)
 print("The 1st response was: ", emo_response)
 # Then, use the response from the 'emo' model as input to the 'story' model
 story_response = get_response('story', emo_response)
 # Now you can use 'story_response' as you wish
 print("The response was: ", story_response)

chain_models()

https://lmstudio.ai/
https://openwebui.com/

Experiment with Dutch local
LLMs
MacWhisper (Mac only) is a great local transcription tool that converts audio to text. It also has an
option to add LLMs through Ollama so that you can summarize your transcripts, which would make
a great complete suite for recording and summarizing meetings running only local models. For
English this seems to work rather well, but local LLMs are known for not being all to reliable for
Dutch. So we ran an experiment, summarizing transcripts of the HKU en AI podcast.

Setup
Setting up LLMs in MacWhisper is quite straightforward: install Ollama and install your model. Next,
open MacWhisper and go to Global (the settings menu), then AI, Services. If Ollama is running, you
should be able to select all installed models in MacWhisper by clicking Ollama under Add another
service. Now once you've made a transcript you can interact with ollama under the AI tab (three
stars) at the top right.

Testing Dutch in MacWhisper (May '25)
Interacting with any model through MacWhisper in Dutch gives strange results. Replies are often in
English, or seem to ignore the prompt completely.

Gemma3 and Mistral give pretty accurate summaries, but in English only. Interestingly it
does seem to understand the Dutch contents of the transcript (although it misses some
key points as well).
Deepseek goes completely off the rails
Llama3.2 gives a very short summary that misses key points.

Changing prompts or moving to chat mode does not seem to improve anything.

Testing Dutch in LLM directly (May '25)

Conclusion: No success yet for summarizing Dutch texts, in Dutch. (May 2025)“

https://goodsnooze.gumroad.com/l/macwhisper
https://bookstack.hku.nl/books/artificial-intelligence/page/running-large-language-models-locally
https://castopod.hku.nl/@HKUenAI

I thought MacWhisper might be interfering in some way (as I could not get the LLM to react to
anything else than 'summarize'), so I moved to Open WebUI. In this way I could still interact with
the LLM and add a text file as imput. The textfile was the transcript export from MacWhisper.

While did this improve the interaction as I could talk to the LLM directly, results were similar to
above. Some additional models tested here:

Granite3.2 gave mixed bulletpoints, some accurate, some wildly off. Granite did respond
in Dutch.
Phi3,5 and Phi4 had nonsense results, although in Dutch.
Two Dutch LLM models Geitje-7b en Fietje-2b completely derailed. They did not answer
any questions but went rambling about daycare for young children, paper crafting and
Dutch politics. It's clear what these models were trained on...

https://openwebui.com/

